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Abstract

The results in the EDM proposal1, chapter 5H, for the sensitivity of
the EDM experiment have been checked using pseudo data and least
squares fitting techniques.  The applicability of the formula in Chibane et
al.2 has been tested for the case of small backgrounds.  The role of the
phase factor in the fitting is clarified.  In the case of EDM pseudo-data, the
sensitivity is mapped as a function of the efficiency for identifying and
vetoing the UCN beta decays, with a factor-of-two improvement found if
all beta decays are removed.  Finally, the sensitivity of the experiment is
determined to be twice the limit given by the Heisenberg Uncertainty-
Principle when beta decays are not identified and equal to the limit when
they are removed from the data stream.  The Uncertainty-Principle limit is
found to be optimally small at a different measuring time than in the EDM
proposal, i.e. 2000 s.

I. Introduction

The electric-dipole-moment (EDM) experiment proposal1 states that the
scintillation rate from neutron absorption on 3He is given by
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Eq. V.H.1 of the proposal, where ΦB is the background rate, N is the initial number of
ultra-cold neutrons (UCN), and ΓAVE is the decay width. The β-decay lifetime is τβ and
the absorption lifetime is τ3.  P3 is the 3He polarization, Pn is the neutron polarization, Γp

is the polarization-decay width, and φ is an arbitrary phase.  The precision that the
frequency f = ωr/2π may be determined is given by
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Eq. V.H.2 of the proposal, where A is the magnitude of the oscillatory term, I is the
magnitude of the background term, and Tm is the measurement time.  Equation (2) is
derived in Chibane et al2 based on least squares fitting of a function closely related to Eq.
(1) with certain assumptions about its form.  This study addresses a number of points by
doing least-squares fits to pseudo-data and extracting the value of (∆f)2:
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• Does Eq. (2) give the proper value for the standard deviation of f when applied to Eq.
(1).

• Equation (2) is derived under the assumption that I >>A.  This assumption is not
satisfied in Eq. (1); is there a consequence?

• Equation (2) has a natural time range that starts at 0, when the measurement begins,
and ends at Tm, when the measurement ends.  Chibane et al2 used the range [-Tm/2,
Tm/2].  Does the time range make a difference?

• Equation (1) assumes no suppression of the β decays via particle identification.  How
much improvement in sensitivity arises from identifying the β decays?

• How are the errors, ∆f=σ(f), affected by the other free parameters in Eq. (1)?
• How do the uncertainties, ∆f, from fitting the pseudo-data, compare to the optimal

expectation from the Heisenberg-Uncertainty Principle?
• Does the Heisenberg-Uncertainty Principle guide us to better parameters than those in

the proposal?
It is convenient to rewrite Eq. (1) as
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where it is assumed that there is no constant background and the two species remain
100% polarized throughout the measurement.  The factor εβ is introduced to measure the
efficiency for observing the β decays and for eliminating them.  It is further assumed that
the efficiency for detecting the absorption is unity (except when ε3 is treated as a variable
in a fit) and that τ3=τβ=2τ.  For convenience, τ3 is taken to be 1000 s.  The quantity ΓAVE

becomes

τττ β
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because the β decays are still happening even if they are suppressed in the signal
measurement.  The assumptions in Eq. (3) are the same as made in the EDM proposal1.

Section II is devoted to understanding the fitting of periodic functions as done in
Chibane et al.2  Section III discusses how the pseudo-data is produced and the effects of
some of the caveats.  Section IV gives the results that address the questions above, and
Section V summarizes the conclusions.

II. Fitting Periodic Functions

Equation (2) is derived as a result for fitting the function
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which is closely related to Eq. (3) except for the normalization, the exponential decay,
and the β decays.  The Chibane et al.2 assumption of I >>A is used below.

Drawing on the standard development for least squares fitting described in
Bevington,3 the best estimator for parameters of a function determined by fitting data is
given by minimizing the χ2 per degree of freedom
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as a function of the parameters xj, where yi is a measured data point, σi is the standard
error in yi, and gi(xj) is the value of the function evaluated at i.  In the case that gi is non-
linear in the parameters xj, gi can be expanded around the solution and the minimum is
found via iteration.  This work utilizes the CURVFIT method described in Bevington.3

The minimization requires the calculation of the curvature matrix
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Then the variance of xj is
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In the case where the measured data has normal errors,

ii y=σ .        (9)

The number of counts in a bin of width ∆t is Φ∆t.  For the case of the first parameter
(j=1) selected to be f0,
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If Tm>>(2πf0)
-1, the oscillatory term will integrate to zero with high accuracy, and
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evaluated over the range [-Tm/2, Tm/2].  The result is
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which is the inverse of Eq. (2).
The natural time range for a measurement with a decaying species is [0,Tm].  If

Eq. (11) is evaluated over this range, the result for α11 is 4 times larger, and thus ∆f0 is
twice as small.  This result is unphysical because the change in range only corresponds to
a shift in phase.  If the fitting process is expanded to include two variables, f0 (j=1) and φ
(j=2), the α matrix can be shown, by methods very similar to those used to get Eq. (10),
to be
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with each matrix element evaluated over an arbitrary starting time t0 and of length Tm, i.e.
[t0, t0+Tm].  The inverse of α is
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The (α-1)11 element, the square of the standard error σ( f0), is independent of t0 and equal
to Eq. (2).  By including φ into the fitting, a physical result is obtained.  The choice of
Chibane et al.,2 t0=-Tm/2, makes Eq. (14) diagonal and explains why those authors did not
need to consider the simultaneous fitting of φ.  This choice of t0 also gives the minimum
value for (α-1)22, the square of the standard error σ(φ).  The error in φ depends on t0 for
reasons that are not understood.

The technique used to generate pseudo data will be described in the next section.
When the fitting program is used to evaluate σ(f0) from pseudo data, the result is 4.23 for
I =27000, A=2700 and Tm=500s.  The value from Eq. (2) is 4.24 and provides a useful
check of the program.  The units of σ(f0) are unnatural because Eq. (5) is not normalized;
note that Eq. (3) is normalized to the initial number of UCN.

III. The Generation of Pseudo Data

The program produces sets of pseudo-data, the yi in Eq. (6), that depend on the
random number seeds.  The initial values for the yi are Φ∆t, where Φ comes from Eq. (3)
and ∆t is 1/90 s.  Whereas f is taken to be 3 Hz as in the EDM proposal,1 each cycle is
broken into 30 bins.  The choice to use a large number of bins per cycle removes
inaccuracies associated with the size of the time bins. The total number of bins is
30fTm=45,000 for Tm=500 s.  The values of the other parameters in Eq. (3) are taken to be
the same as in the EDM proposal1, namely τ=500 s and N=2x106; the value of φ=0.2-π/2
is picked arbitrarily.

The initial value of σi is the square root of yi, with the special case that σi is 0.7
when yi is 0. The final value of yi is derived from the initial value by adding a random
number selected from a Gaussian distribution characterized by σi; yi is set to the closest
integer or zero in the case of a negative value.  The final value of σi is the square root of
yi, again with the special case that σi is 0.7 when yi is 0.

Although the choice of Gaussian statistics is adequate for this study, it produces
some problems that should be taken into account in detailed studies.  Firstly, the errors σI

and the data values yi should be picked according to Poisson statistics.  Secondly, the
fitting expression, Eq. (6), should be modified to match Poisson statistics.  The
consequences of choosing Gaussian statistics are that the central values of the fits for
some of the parameters, e.g. τ, come out slightly off the generating value and χ2/ν is
somewhat greater than 1.  An examination of the contributions to χ2/ν at each data point
shows that the biggest contributions come where Φ is near zero, exactly where Gaussian
statistics break down.

The CURVFIT3 algorithm uses a parameter λ to switch between the gradient
method and the method of steepest decent.  The diagonal elements of the α matrix are
multiplied by (1+λ).  As the program iterates toward a minimum in χ2 space, the value of
λ is increased by a factor of 10 when χ2 gets worse and is decreased by a factor of 10



when χ2 improves.  The search is stopped without solution if λ exceeded 104.  The search
is stopped successfully when χ2/ν improves by less than 10-6.  Experience indicates that
the search converges if the initial parameters are within about 10 standard deviations of
the final values.

IV Results and Comparison to the Uncertainty Priciple

The computer program for solving for the parameters of Eq. (3) has been checked
in two ways when f and φ are varied simultaneously.  Firstly, Eq. (7) can be evaluated
analytically, in much the same way as Eq. (14) was derived, for the case when εβ=0.  The
analytic solution gave a value of 1.35 µHz, while the program gave 1.42 µHz.  The small
difference is attributed to type of statistics assumed in generation of the pseudo data.

Secondly, the value of σ(f) from the program is compared to the distribution of
central values obtained for a number of different pseudo-data sets.  The pseudo-data sets
are produced by changing the initial random number seeds for each set.  The results for
40 data sets with εβ=1 are shown in Fig. 1.  The mean for the distribution is –0.02 µHz,
and the standard deviation is 2.8 µHz.  The standard deviation compares well to σ(f)=2.7
µHz from the program.  The curve in Fig. 1 is a Gaussian normalized to 40 data sets in
bins of 0.4 µHz with an offset of –0.02 µHz and a standard deviation of 2.7 µHz, i.e. with
the parameters of the data sets except for the standard deviation that comes from the
program.

Table 1 shows how σ(f) varies as the number of free parameters in the fits is
increased beyond f and φ.  The decrease in accuracy is very slow because all of the added
variables are determined from distinct aspects of Eq. (3).  If the variables were not
statistically independent, complicated contributions to the signal function would degrade
the experiment.  This note does not treat the case where there are other exponential
contributions as might arise from cold-neutron activation betas.

The value of σ(f) has been calculated as a function of εβ when only f and φ are
free parameters.  The result is plotted in Fig. 2. There is nearly a factor-of-two
improvement in the error when all the β-decays are removed from the sample by particle
identification.  The value calculated in the EDM proposal1 is shown also as the solid
point at εβ=1; the point falls on the curve within the round-off accuracy of the calculation
in the proposal.  Empirically, the assumption that I >>A, i.e. the background is large,
does not seem to have been required for this case to get an accurate answer.

The results in Fig. 2 can be compared to limit imposed by the Heisenberg-
Uncertainty Principle.  The principle states that
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The ∆ symbol means root-mean square error in this application.  Thus ∆t=t/ 12 .  It is
interesting to understand the best measurement that can be made, i.e. when the equal
symbol is appropriate.  The evaluation of Eq. (16) is experiment dependent.  For the



EDM proposal,1 the expression for N initial neutrons in a single cycle over the time t
becomes
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in a time bin ∆t.   The initial number of neutrons is reduced to those absorbed by the 3He.
The contributions to the error is integrated from all the time bins as
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When Eq. (20) is evaluated for the conditions assumed in the EDM proposal,1 the result
is σ(f)=1.38 µHz and is shown as the dashed line in Fig. 2.  This result is 2.0 times
smaller than the EDM proposal1 and equal to what can be achieved with perfect particle
identification of the neutron β-decays.  The no-background limit, εβ=0, is the best that
can be done with this technique and these parameters.

The proposal implicitly assumes a UCN-fill time TF of 1000 s.  The initial number
of neutrons N in the cell is then
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where P is the specific-production rate (1/cc/s)  and V is the volume (4x103 cc) of one
measuring cell.  If the experiment runs for a total time T, say 100 d=8.64x106 s, then the
measurement of σ(f) is repeated T/(Tm+TF) times.  Hence, the ultimate result will be
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If evaluated at the standard values, σΤ(f) is 19.5 nHz.  The quantity σΤ(f) can be
optimized as a function of Tm, TF and τ3, i.e. the 3He concentration.  A simple grid search



of Eq. (22) yields a minimum value for σΤ(f) of 8.2 nHz with Tm=2850 s, TF=1375 s and
τ3=2000 s.  The minimum value varies quite slowly, and for the more familiar values of
Tm=2000 s, TF=1000 s and τ3=1000 s, σΤ(f)=9.0 nHz.  The optimization yields a factor-
of-two improvement.  The biggest contribution comes from a longer measuring time.  It
is assumed but not demonstrated that the least-squares fitting of no-background pseudo-
data will track these results.  A similar examination of the equations on page 142 of the
proposal, where β decay provides a background, seems to indicate that adjusting the
times only leads to a 20% improvement in the limit.  Hence eliminating the β decays is
even more important if it allows for a better parameter optimization.  The various
combinations of times and backgrounds are the subject for further study.  For reference, a
9.0-nHz measurement in each of two cells corresponds to a two-sigma limit on the
neutron EDM of 2.4x10-28 e•cm with a 50-kV/cm applied electric field.

If the neutron EDM is measured via the Ramsey method of separated-oscillatory
fields,4 all the surviving neutrons are measured at the same time, there is no 3He
absorption, and Eq.(22) is replaced by
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Here τ is a constant equal to τβ.  The value for σΤ(f) in Eq. (23) is 5.9 nHz for the
proposal parameters.  For identical conditions, the Ramsey method is roughly a factor of
3.3 times better than the superfluid-He method.  However, Eq. (23) may also be
optimized as a function of Tm and TF.  The optimum is at Tm=TF=1500 s.  In this case,
σΤ(f)=4.1 nHz.  If each type if measurement is made at its optimum parameters, the
Ramsey method is better by a factor of 2.0.  Presumably, the proposal conditions are
farther from optimal for the superfluid-He method.

In superfluid He, the UCN lifetime τ may be 500 s, but the best value for τ in the
latest EDM measurement with the Ramsey technique5 is roughly 100 s due to wall losses.
Under these circumstances, the superfluid-He method gives the better result.

V. Conclusions

Least-squares fitting programs, applied to EDM pseudo data, give the same result
for error in the extracted frequency as derived by Chibane et al.2 and presented in Eq. (2)
so long as both f and φ are treated as varied parameters.  For this case, the assumption
that the background must dominate the oscillatory signal does not seem to be relevant.  If
the neutron β-decays can be identified and removed from the data sample, up to a factor
of two in sensitivity may be gained.  Besides the φ parameter, other free variables in the
fitting function do not appear to degrade the uncertainty in f.  The limits that can be set by
the EDM experiment are 2.0 times the value calculated for the Heisenberg-Uncertainty
Principle and equal to the calculation when the β-decays are removed from the data.  By
optimizing the measuring time Tm, the cell loading time TF and the absorption lifetime t3,
a minimum in the calculation of the limit from the Heisenberg Uncertainty Principle is



found at 2000, 1000 and 1000 s, respectively.  That is another factor of two better than
the value at Tm=500 s when the β-decay background is eliminated.
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Figure 1: The number of data sets that have f offset from 3 Hz in 0.4 µHz bins.  The histogram has an offset

of –0.02 µHz and a σ(f) of 2.8 µHz.  The solid curve is a properly normalized Gaussian with the value of

σ(f) set to 2.7 µHz as predicted by the fitting program.
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Figure 2. The value of σ(f) plotted versus the efficiency of observing β decays εβ after they are vetoed.  The
solid curve runs from εβ=0, no remaining β decays, to εβ=1, no detection of β decays.  The solid point at
εβ=1 is the value from the EDM proposal.1 The dashed line is the limit imposed by the Heisenberg-
Uncertainty Principle on this method of measurement.
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Variables σ(f) (µHz)
f, φ 2.70

f, φ, τ 2.77
f, φ, τ, ε3 2.77

f, φ, τ, ε3, εβ 2.77

Τable 1: The variations in σ(f) as the number of variables in the fit are changed.


